A Faster Graph-Based Segmentation Algorithm with Statistical Region Merge
نویسندگان
چکیده
The paper presents a modification of a bottom up graph theoretic image segmentation algorithm to improve its performance. This algorithm uses Kruskal’s algorithm to build minimum spanning trees for segmentation that reflect global properties of the image: a predicate is defined for measuring the evidence of a boundary between two regions and the algorithm makes greedy decisions to produce the final segmentation. We modify the algorithm by reducing the number of edges required for sorting based on two criteria. We also show that the algorithm produces an over segmented result and suggest a statistical region merge process that will reduce the over segmentation. We have evaluated the algorithm by segmenting various video clips Our experimental results indicate the improved performance and quality of segmentation.
منابع مشابه
Paper: Vectorization of a statistical segmentation
We propose an efficient vectorial implementation of a region merging segmentation algorithm. In this algorithm the merging order is based on edge value, and the merging predicate exploits recent statistical investigations. A notable acceleration is obtained by exploiting two forms of parallelism, firstly the Data Level Parallelism by processing edges of the same weight in parallel, secondly the...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA Graph Theory Approach for Automatic Segmentation of Color Images
A hybrid split and merge segmentation method for color images is presented in this work. It combines edge and region information to merge adjacent regions produced in the initial watershed-based segmentation stage. A novel technique is introduced to simplify the Region Adjacency Graph (RAG) structure and speed-up the merging process along with a merging termination criterion for automatic segme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006